On the smallest enclosing information disk

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Smallest Enclosing Information Disk

In this paper, we present a generalization of the smallest enclosing disk problem for point sets lying in Information-geometric spaces. Given a set of vector points equipped with a (dis)similarity measure that is not necessarily the Euclidean distance, we investigate the problem of finding its center defined as the point minimizing the maximum distance to the point set. For a broad class of dis...

متن کامل

On the Smallest Enclosing Balls

In the paper a theoretical analysis is given for the smallest ball that covers a finite number of points p1, p2, · · · , pN ∈ R . Several fundamental properties of the smallest enclosing ball are described and proved. Particularly, it is proved that the k-circumscribing enclosing ball with smallest k is the smallest enclosing ball, which dramatically reduces a possible large number of computati...

متن کامل

Improved Bounds for Smallest Enclosing Disk Range Queries

Let S be a set of n points in the plane. We present a method where, using O(n log n) time and space, S can be pre-processed into a data structure such that given an axis-parallel query rectangle q, we can report the radius of the smallest enclosing disk of the points lying in S ∩ q in O(log n) time per query.

متن کامل

A fast deterministic smallest enclosing disk approximation algorithm

We describe a simple and fast O(n log2 1 ε )-time algorithm for finding a (1 + ε)-approximation of the smallest enclosing disk of a planar set of n points or disks. Experimental results of a readily available implementation are presented.  2004 Elsevier B.V. All rights reserved.

متن کامل

Approximating smallest enclosing disks

#"%$'&( *) -time algorithms were designed for the planar case in the early 1970s [4, 6], the problem complexity was only settled in 1984 with N. Megiddo’s first linear time algorithm [3] for solving linear programs in fixed dimension. Unfortunately, these algorithms exhibit a large constant hidden in the big-Oh notation and do not perform so well in practice. E. Welzl [8] developed a simple rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing Letters

سال: 2008

ISSN: 0020-0190

DOI: 10.1016/j.ipl.2007.08.007